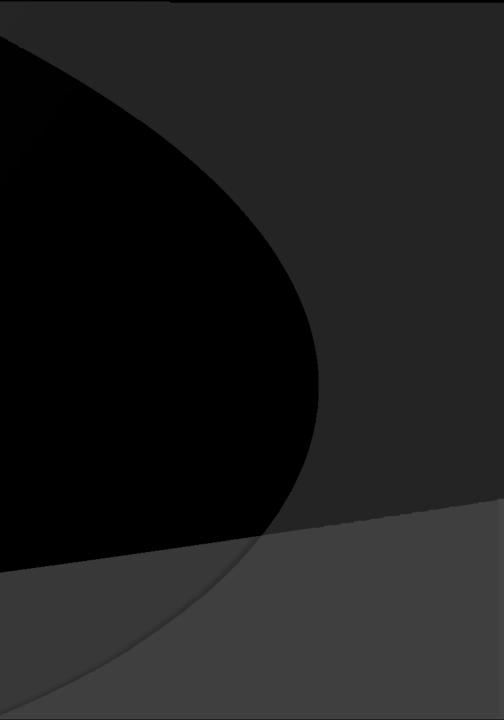
DOCTORS COMMUNITY HOSPITAL EXPANSION Lanham, Maryland


Daniel Alexander BAE/MAE in Construction Management Senior Thesis Presentation 2009 The Pennsylvania State University

Presentation Outline

- **Project Overview**
- **BIM Execution Planning Analysis** Π. Prefabricated Façade Analysis Ш.
- **Demonstration of Breadth**
- Site Logistics Analysis IV.
- **Final Conclusions** V_{-}
- Q & A VI.

4/22/2009

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

Hospital

- Project Overview
 - Location: Lanham, MD
 - **Owner: Doctors Community**
 - CM at Risk: Gilbane Building Co.

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q & A

4/22/2009

- Goal: Expand and Improve Hospital
 - - Expand 1st Floor Emergency Department
 - Renovate existing patient tower

Project Overview

Expand patient tower

Senior Thesis Presentation 2009

3 Story Expansion above existing 2 floors

5 Story Expansion

Cost Breakdown

- I. Project Overview
- II. BIM Execution Planning Analysis

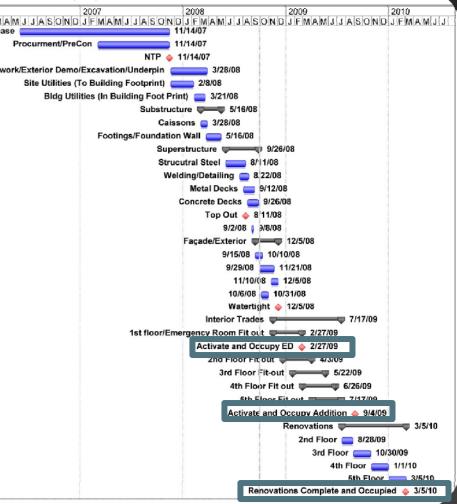
Tota

- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

		Cost	Cost/SF
al Projec	t (Original)	\$ 31,318,000	\$ 157
al Buildi	ng (Original)	\$ 26,413,000	\$ 132
tems			
	Mechanical	\$ 9,203,000	\$ 46
	Structural Steel	\$ 1,554,000	\$8
	Electrical	\$ 3,084,000	\$ 15
	Masonry	\$ 1,052,000	\$5
	Concrete	\$ 1,035,000	\$5
	Sprinkler	\$ 444,500	\$2
			and the second se

Project Overview

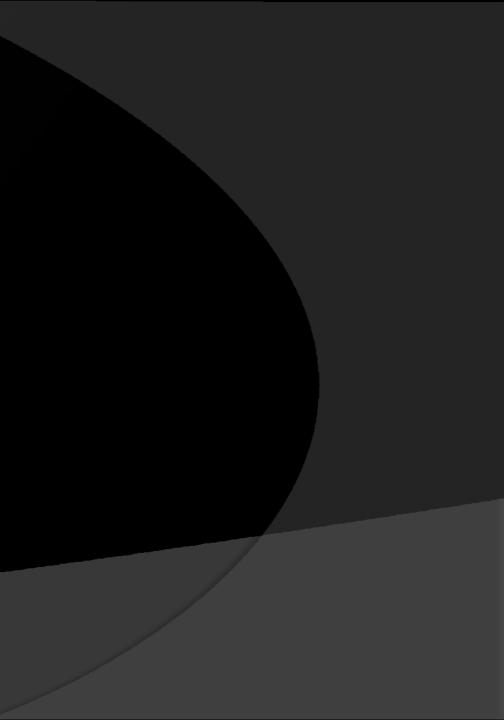
4/22/2009


 \bigcirc

0

- Cost and Schedule Summary
 - 29 Month Project, with three critical Milestones
 - ED Expansion complete, Patient Tower Expansion Compete, Renovations Complete
 - Approx \$31 Million original cost
 - Currently about \$37 Million with added scope change orders

2006 J F M A	Finish	Start	Duration	Task Name	0	D
gn Phas	Wed 11/14/07	Thu 6/1/06	380 days	Design Phase	×	1
	Wed 11/14/07	Mon 3/5/07	183 days	Procurment/PreCon		2
	Wed 11/14/07	Wed 11/14/07	0 days	NTP	-	3
Sitewa	Fri 3/28/08	Mon 11/19/07	95 days	Sitework/Exterior Demo/Excavation/Unc		4
	Fri 2/8/08	Mon 11/19/07	60 days	Site Utilities (To Building Footprint)		5
	Fri 3/21/08	Mon 2/11/08	30 days	Bldg Utilities (In Building Foot Print)		6
	Fri 5/16/08	Wed 3/5/08	53 days	Substructure	-	7
	Fri 3/28/08	Wed 3/5/08	18 days	Caissons		8
	Fri 5/16/08	Mon 3/24/08	40 days	Footings/Foundation Wall		9
	Fri 9/26/08	Mon 6/2/08	85 days	Superstructure	-	10
	Mon 8/11/08	Mon 6/2/08	51 days	Strucutral Steel		11
	Fri 8/22/08	Mon 7/21/08	25 days	Welding/Detailing		12
	Fri 9/12/08	Mon 8/4/08	30 days	Metal Decks		13
	Fri 9/26/08	Mon 8/18/08	30 days	Concrete Decks	-	14
	Mon 8/11/08	Mon 8/11/08	0 days	Top Out		15
	Mon 9/8/08	Tue 9/2/08	5 days	Place Rooftop Mech Plant	-	16
	Fri 12/5/08	Mon 9/15/08	60 days	Façade/Exterior		17
	Fri 10/10/08	Mon 9/15/08	20 days	Exterior CFMF		18
	Fri 11/21/08	Mon 9/29/08	40 days	Brick Façade		19
	Fri 12/5/08	Mon 11/10/08	20 days	Windows		20
	Fri 10/31/08	Mon 10/6/08	20 days	Roofing		21
	Fri 12/5/08	Fri 12/5/08	0 days	Watertight		22
	Fri 7/17/09	Mon 11/17/08	175 days	Interior Trades		23
	Fri 2/27/09	Mon 11/17/08	75 days	1st floor/Emergency Room Fit or		24
	Fri 2/27/09	Fri 2/27/09	0 days	Activate and Occupy ED		30
	Fri 4/3/09	Mon 12/22/08	75 days	2nd Floor Fit out		31
	Fri 5/22/09	Mon 1/26/09	85 days	3rd Floor Fit-out		37
	Fri 6/26/09	Mon 3/2/09	85 days	4th Floor Fit out		43
	Fri 7/17/09	Mon 4/6/09	75 days	5th Floor Fit out		49
	Fri 9/4/09	Fri 9/4/09	0 days	Activate and Occupy Addition		55
	Fri 3/5/10	Mon 7/20/09	165 days	Renovations	-	56
	Fri 8/28/09	Mon 7/20/09	30 days	2nd Floor		57
	Fri 10/30/09	Mon 8/31/09	45 days	3rd Floor		58
	Fri 1/1/10	Mon 11/2/09	45 days	4th Floor		59
	Fri 3/5/10	Mon 1/4/10	45 days	5th Floor		60
	Fri 3/5/10	Fri 3/5/10	0 days	Renovations Complete and Occupied		61



ANALYSIS 1

Building Information Modeling Execution Planning

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

• BIM Uses

3D MEP Coordination, Phase Planning, 4D Modeling, Virtual Mockups, Cost Estimation, Energy Analysis, Structural Analysis, Record Models, Building Maintenance...

BIM Execution Planning

 \bigcirc

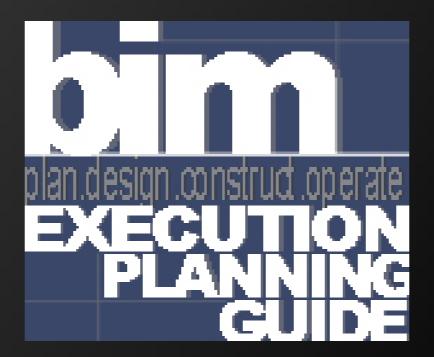
4/22/2009

- What is Building Information Modeling (BIM)?
 - "process of designing, analyzing, integrating, and documenting a building's lifecycle by developing an intelligent virtual prototype of the building using a database of information" – PSU CIC

Current Industry Issues How do we implement BIM?

Senior Thesis Presentation 2009

What uses are right for our project?


BIM Execution Planning

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

 \bigcirc

How to Implement?

Goals for my BIM Related Thesis Work: Develop generic process model for **3D MEP Coordination**

- 2. **3D** Process
- **3D** Coordination at DCH

Senior Thesis Presentation 2009

Compare 2D coordination at DCH to

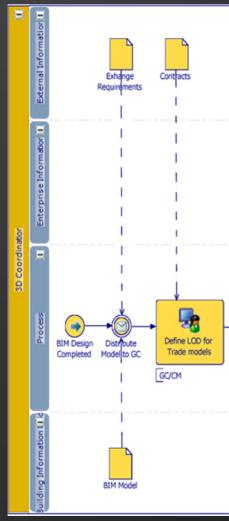
Define implementation process for

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

- Input from Industry Professionals
 - Balfour Beatty, Jacobs, Gilbane
- **Discussions with Graduate** students
- Research of Academic work

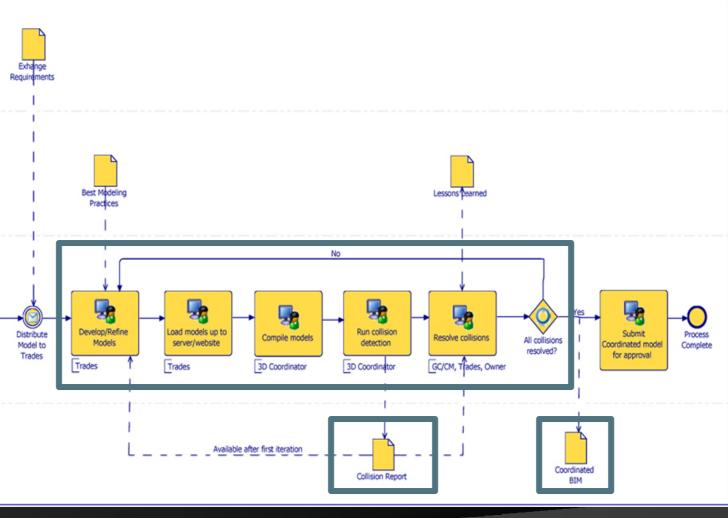
Developing a Process

Results


- **3D MEP Coordination**

Senior Thesis Presentation 2009

Definition of common process traits Used to establish the process model for


- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

Process

4/22/2009

Process Modeling Notation (BPMN) **TIBCO Software**

0

Senior Thesis Presentation 2009

Developed using Business

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

Assets

 \bigcirc

- Can leverage Gilbane's internal experience
- Interested in the process
- Some trades have experience

- Trades?
- Level of Detail?
- File Exchange requirements?
- Coordination meeting?

4/22/2009

Implementing 3D Coordination at DCH Major Questions to Address:

Project team assets?

Weekly Coordination Cycle?

Trades for 3D Coordination

•	Steel	•
•	Plumbing	•
•	Medical Gas	•
•	Pneumatic Tubing	•

- HVAC
- Electrical
- Sprinkler
- Cable trays

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q & A

Level of Detail

 Defined from Model Progression Specification

Level of Detail ->	100	200	300	400	500
Model Content					
Design & Coordination (function / form / behavior)	Non-geometric data or line work, areas, volumes zones,	Generic elements shown in three dimensions	Specific elements Confirmed 3D Object Geometry	thop drawing/ abrication	As-built
	etc.	- maximum size - purpose	- dimensions - capacities - connections	purchase manufacture install specified	- actual

Implem Coordi Maj

4/22/2009

- File Exchange requirements?
- Coordination meeting?
- Weekly Coordination Cycle?

nenting 3D
nation at DCH
or Questions to Address
roject team assets?
ades?

Level of Detail?

Senior Thesis Presentation 2009

- File Exchange Requirements

Specify compatible formats, not program specific • Ex: Must be Navisworks compatible

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

Coordination Meeting

- Conduct weekly at the jobsite trailer
- Team lacks experience to possible conduct interactively

4/22/2009

- Project team assets?
- Trades?
 - Level of Detail?
 - File Exchange requirements?

Implementing 3D Coordination at DCH Major Questions to Address:

- Coordination meeting?
- Weekly Coordination Cycle?

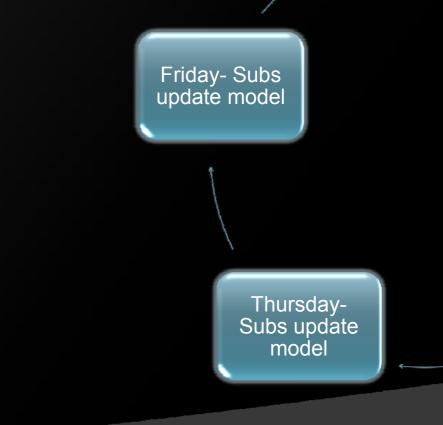
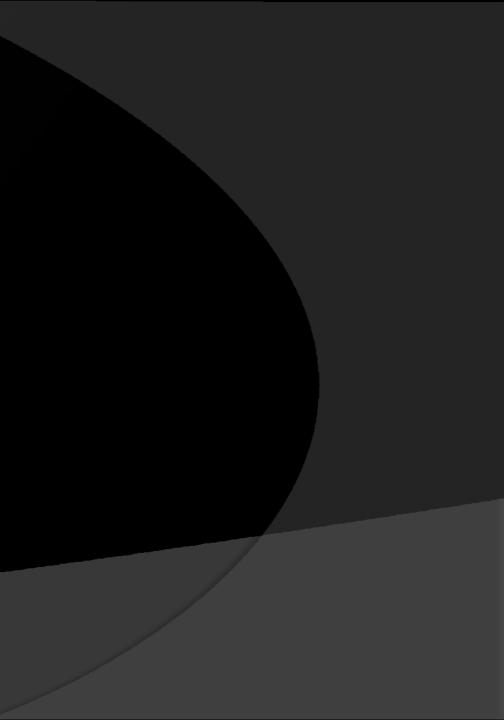


Image Courtesy of BBC

Senior Thesis Presentation 2009


Tuesday- GC compiles collision model

Wednesday-Coordination Meeting

ANALYSIS 2

Prefabricated Façade

Prefabrication at DCH

4/22/2009

30	Install Elevator	25 days	Tue 11/4/08	Mon 12/8/08	Install Elevator 12/8/08
31	Façade/Exterior	55 daya	Tue 9/23/08	Mon 12/8/08	
32	Exterior CFMF North	5 days	Tue 9/23/08	Mon 9/29/08	Exterior CFMF North () \$/29/08
33	Exterior CFMF East	7 days	Tue 9/30/08	Wed 10/8/08	Exterior CFMF East g 10/8/08
34	Exterior CFMF South	4 days	Thu 10/9/08	Tue 10/14/08	Exterior CFMF South 0 10/14/08
35	Exterior CFMF West	4 days	Wed 10/15/08	Mon 10/20/08	Exterior CFMF West g 10/20/08
36	North Stair Tower	6 days	Tue 9/30/08	Tue 10/7/08	North Stair Tower 🗿 10/7/08
37	South Stair Tower	6 days	Wed 10/8/08	Wed 10/15/08	South Stair Tower 🟮 10/15/08
38	Frect Scatfold	5 days	Tue 9/30/08	Mon 10/6/08	Frect Scattold e 10/6/08
39	Sheathing/Brick Façade North	10 days	Tue 10/7/08	Mon 10/20/08	Sheathing/Brick Façade North 🧧 10/20/08
40	Sheathing/Brick Façade East	14 days	Tue 10/21/08	Fri 11/7/08	Sheathing/Brick Façade East 🧰 11/7/08
41	Sheathing/Brick Façade South	8 days	Mon 11/10/08	Wed 11/19/08	Sheathing/Brick Façade South 🧧 11/13/08
42	Sheathing/Brick Facade West	8 days	Thu 11/20/08	Mon 12/1/08	Sheathing/Brick Façade West 👩 12/1/08
43	Windows	20 days	Tue 11/11/08	Mon 12/8/08	Windows 🚞 12/8/08
44	Roofing	20 days	Tue 10/14/08	Mon 11/10/08	
45	Watertight	0 days	Mon 12/8/08	Mon 12/8/08	
46	Interior Trades	149 days	Tue 11/25/08	Fri 6/19/09	Interior Trades 🛡

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

- Why choose prefabrication? Construction time reduced Façade on the Critical Path Work performed in Warehouses
 - (controlled conditions)
 - Brick façade scheduled to go into winter months

- Goals of Analysis $\textcircled{}$
 - . Analyze impacts of changing envelope on schedule and cost
 - 2. Asses impact on structure
 - Asses impact on mechanical system 3.

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q & A

- Analyzed two alternative prefabricated solutions
 - CarbonCast from High Concrete Precast panels from Nitterhouse

System Selection

Criteria	CarbonCast	Nitterhouse	Brick Facade
Ability to Match	A variety of brick	Also, using	Existing
Existing?	finishes can be	ThinBricks, this	building is
	matched through	product can	hand laid brick,
	the use of Thin	match a variety	so matching is
	Brick inlays to the	of finishes.	easy
	system		
Cost of System?	\$37/SF delivered	\$35/SF	\$28/SF
	and installed	delivered and	installed
		installed	
Weight of System?	65 lbs/SF	75 lbs/SF	42 lbs/SF
Insulation	R-Value: 5.4	R-Value: 0.48	R-Value: 0.44
properties?			

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

Schedule C	omparison
Hand-laid Brick Façade	40
Precast	10
Net Difference	Save 30 Days

6 weeks saved

• Demobilize January 1, 2010 instead of February 12, 2010

Schedule Impact

façade

Reduce construction time of the

Precast by t	ŀ
Total Façade Area	
Average Panel Size	
Panels Needed	
Panels Erected Per Day	
Total Duration	

he Numbers		
37,127 SF		
250 SF		
148		
15		
10 Days		

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q & A

Cost Impact

- Initial Cost
- Impact on General Conditions
- Incidental costs due to change in construction methods

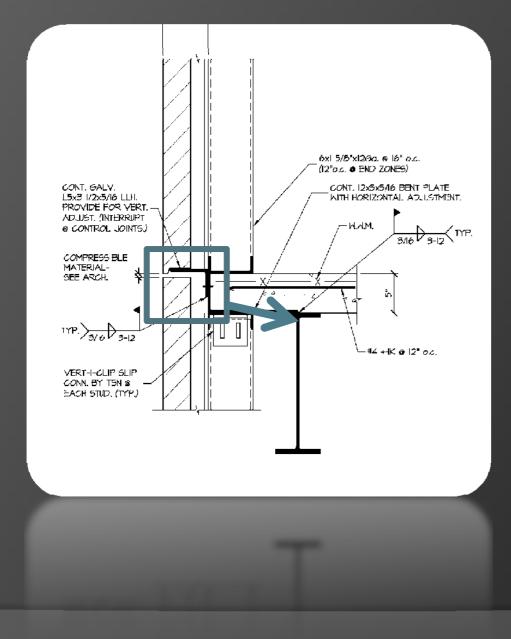
Affects on Cost

Total Added Cost of System

Total GC Savings

Added Cost for Lift

Net Co


Net Cost as % of Façad

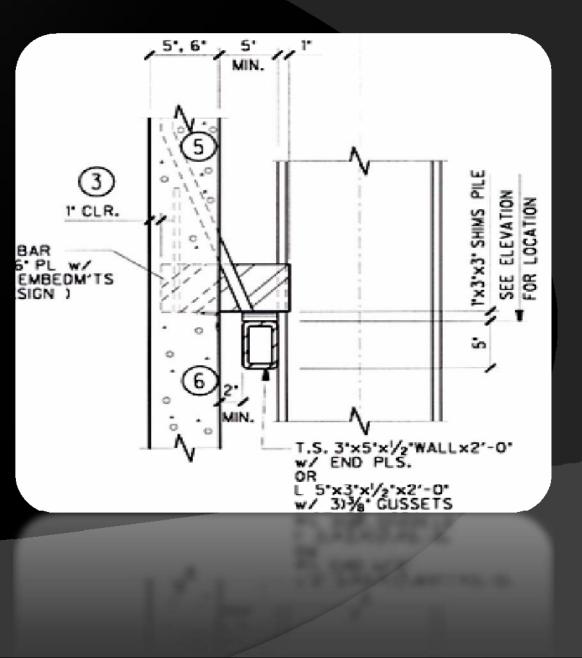
Net Cost as % of Total Proje

Summary of Financial Impact

	\$ 321,280
	\$ 86,588
	\$ 3,100
ost	\$ 237,792
de	% 22.5
ect	% 0.69

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - I. Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q & A

Structural Impact


- Existing System
 Brick façade supported by steel angle
 - 0

4/22/2009

- New System
 - CarbonCast connects directly to column
 - 0

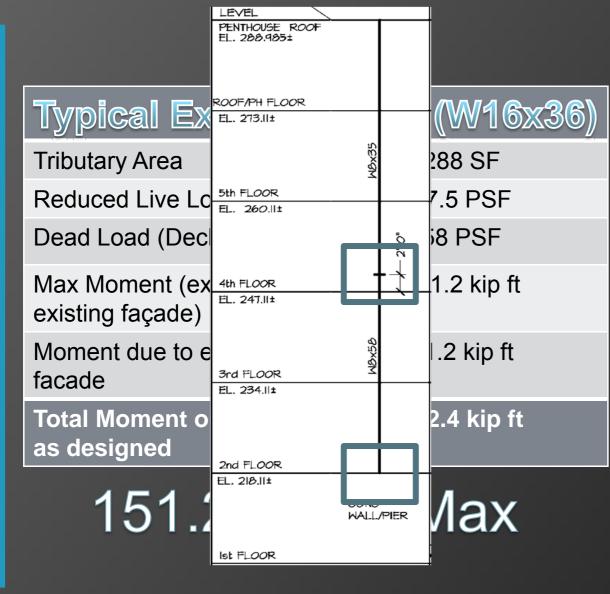
Load path for façade travels to exterior beam

Load path for façade only on column

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

Structural Impact

- Analyze Exterior Beam
 - Opportunity to downsize?
- Analyze Column
 - Ensure can handle additional load


Key Assumptions

- 100 PSF Live Load
- Can use Live Load reduction
- items
- 43 PSF for steel deck from Vulcraft Manual

Senior Thesis Presentation 2009

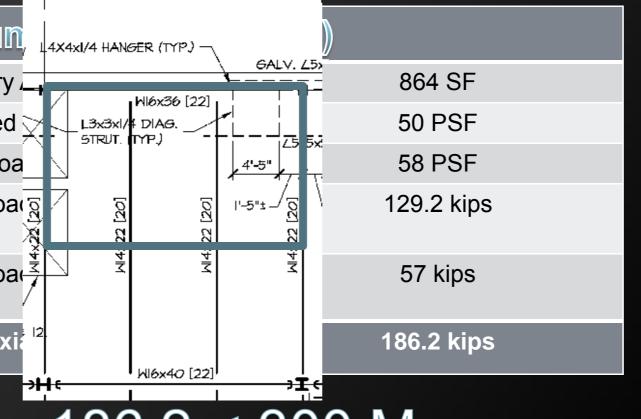
Allow 15 PSF for suspended misc.

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - I. Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q & A

Structural Impact

Tributary

Reduced


Dead Loa

Axial Loa(2)

Axial Loa façade)

Total Axi

4/22/2009

Column Calc 2 (W
Tributary Area
Reduced Live Load
Dead Load (Deck + misc)
Axial Load (excluding new façade)
Axial Load (Due to new façade)
Total Axial Load on Column

186.2 < 300 Max

Senior Thesis Presentation 2009

296.7 < 514 Max

296.7 kips

95.1 kips

201.6kips

44 PSF

58 PSF

1440 SF

.

8x58)

Mechanical Impact

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - I. Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q & A

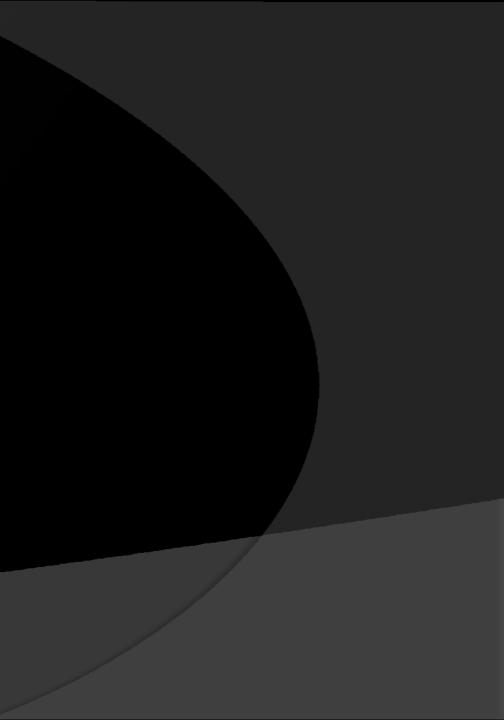
	Carbo	nCas	t Brick			
Tot	Javiiigs Aliaiysis					
Tot	Cooling Savings		\$ 665.32			
	Heating Savings		\$2,082.73			
, 	Total Annual Savings		\$2,748.05			
8"-12"	Payback Period		86.24 years			
-	Interior		Foam Insulation C-GRID Shear True Steel Mesh Primary Reinforci			

• R he

4/22/2009

- New System has lower U-Value
 - Reduces summer heat gain and winter heat loss
 - Translates to energy savings

Summer Heat Gain						
	Area					
System	(SF)	U-Value	ΔT (F)	Heat Gain (MBTU's)	Heat Gain (Tons)	
Brick Façade	37,127	0.0457	23	114,263	9,522	
CarbonCast	37,127	0.0386	23	96,511	8,043	
				Difference (Tons)	1,479	
				Difference (kWh)	5,198	
				Savings @ \$.128	\$ 665.32	
				per kWh		


Winter Heat Loss						
System	Area (SF)	U-Value	ΔT (F)	Heat loss (MBTU)		
Brick Façade	37,127	0.0457	72	357,692		
CarbonCast	37,127	0.0386	72	302,121		
			Difference (MBTU)	55,571		
			Difference (kWh)	16,271		
			Savings @ \$.128	\$ 2,082.73		
			per kWh			

ANALYSIS 3

Site Logistics

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

Site Congestion

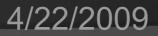
- Limited access to site

- One access road
- Could not access all sides of project
- Road often extremely congested

- Goals of Analysis
 - from the congested site
 - cost
 - 3.

Senior Thesis Presentation 2009

1. Assess if there was an impact 2. Quantify in terms of schedule and


Determine if purchasing adjacent property is a sound investment

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

Effects of Congestion

- Material Storage Location No space near building Storage located far away Up to 4 football fields in some cases Results in manpower inefficiencies! More time retrieving materials (Longer hauls) \bigcirc Double handle materials Breaks get extended

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

Effects of Congestion

- Many early trades were affected **Steel Contractor**

- Used road as laydown sometimes
- Had to shutdown operations
- Underground MEP
 - Location of ductbank on access road Had to mobilize more than once

Source of Savings	Approx. Contract	Savings %	Savings \$
Steel	\$1,550,000	5%	\$ 77,500.00
Mech/ Plumbing	\$9,200,000	-	\$ 150,000.00
Electrical	\$3,000,000	5%	\$ 150,000.00
Masonry	\$1,000,000	10%	\$ 100,000.00
Concrete	\$1,000,000	-	\$ 15,000.00
GC's	\$14,430/wk	8 wks	\$ 115,440.00
	\$607,940		

Schedule and Cost Impact

- Based on input from Project Managers of the various trades

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

4/22/2009

0

Relied on the years of experience and their professional opinion

Trade	Schedule	Impact in	Cost Impact
	Impact	Days on	
		СРМ	
Steel	Shorten 15-20%	9	Save 5-10%
Mechanical/Plumbing	Shorten 25%	15	Save \$150,000
	(Underground)		
Electrical	Shorten 15%	4	Save 5%
Masonry	Shorten 10-15%	5	Save 10%
Concrete	Shorten 5-10%	7	Save \$15,000
Masonry	Shorten 10-15%	5	Save 10%

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

- Add considerable area for the project team to utilize

4/22/2009

- 2-3 years ago @ \$500,000 offered by land owner
 - 1.5 years ago, DCH offered \$1 Million Owner holding out for \$2 Million

Adjacent Property

Several opportunities to buy

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

Effects of Land on Project

- Move ductbank away from building Reduce congestion near the building footprint Storage area closer Improve manpower efficiency **Redesign altogether** Stand alone structure with walkways Unfortunately, Cost of \$ 2 Million is not offset by savings of \$ 600,000 Do not recommend the purchase

4/22/2009

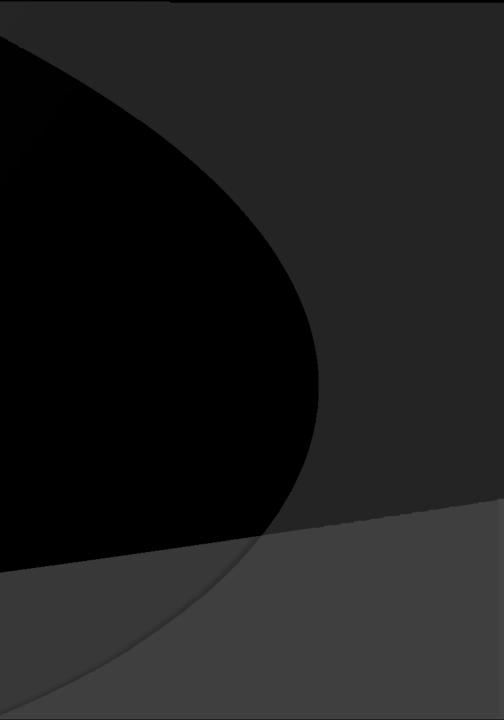
Final Conclusions

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q&A

Site Logistics

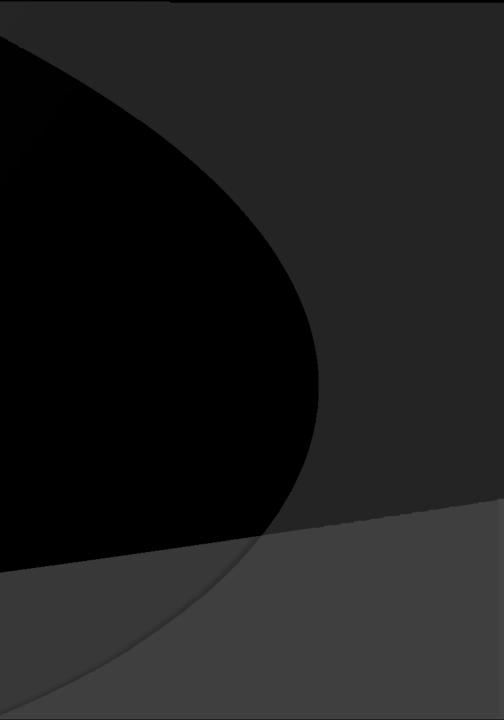
- Can improve schedule by 8 weeks
- Upfront costs not outweighed by returns

- **BIM Execution Analysis** Successfully Generated a process map Successfully outlined implementation procedures


Prefabrication Analysis

- Shorten Duration by 6 Weeks,
- No Structural impact
- Minimal Energy costs savings
- Costs do not outweigh returns

- I. Project Overview
- II. BIM Execution Planning Analysis
- III. Prefabricated Façade Analysis
 - Demonstration of Breadth
- IV. Site Logistics Analysis
- V. Final Conclusions
- VI. Q & A



QUESTIONS?

THANK YOU!

